Appendix: Some useful facts

Al. Some handy inequalities. The following inequalities involving exponen-
tials and logarithms are very handy.

(1) For all real numbers x, we have
1+x<e”,
or, taking logarithms, for x > —1, we have

log(1 + x) < x.

(i1) For all real numbers x > 0, we have
e¥<1l—x +x2/2,
or, taking logarithms,

—x < log(1 — x + x%/2).
(iii) For all real numbers x with 0 < x < 1/2, we have
l—x>e™ >,
or, taking logarithms,

log(1 — x) > —x — x> > —2x.

(1) and (ii) follow easily from Taylor’s formula with remainder, applied to
the function e*, while (iii) may be proved by expanding log(l — x) as a
Taylor series, and making a simple calculation.
A2. Binomial coefficients. For integers n and k, with 0 < k < n, one defines
the binomial coefficient
n\ n! _nn=1)---(n—k+1)
<k> T kln—k)! k! ‘
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()= ()=

and for 0 < k < n, we have Pascal’s identity

()-C)= ()

which may be verified by direct calculation. From these identities, it fol-

We have the identities

lows that (Z) is an integer, and indeed, is equal to the number of subsets of
{1,...,n} of cardinality k. The usual binomial theorem also follows as an
immediate consequence: for all numbers a, b, and for all positive integers
n, we have the binomial expansion

(a+b)' = Z (Z)a”_kbk.

k=0

It is also easily verified, directly from the definition, that

n n
<k><<k+1> forO0<k<(m-1)/2,

n n
<k> > <k+1> for(n—1)/2 < k < n, and

) _ " forO0 <k <n.
k n—k

In other words, if we fix n, and view (Z) as a function of k, then this
function is increasing on the interval [0, n/2], decreasing on the interval
[n/2,n], and its graph is symmetric with respect to the line k = n/2.

Countably infinite sets. Let Z* := {1,2,3,...}, the set of positive inte-
gers. A set S is called countably infinite if there is a bijection f : ZT — S;
in this case, we can enumerate the elements of S as xy, xp, x3,..., wWhere

X = f(l)
A set S is called countable if it is either finite or countably infinite.

For a set S, the following conditions are equivalent:

e .S is countable;
e there is a surjective function g : Z* — S

e there is an injective function 4 : § — Z*.

The following facts can be easily established:
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(1) if S4,...,S, are countable sets, then so are S U --- U S, and
ST X xSy

@i1) if .S, .S, 53, ... are countable sets, then so is U?; Si;

(ii1) if S is a countable set, then so is the set U:ZO S of all finite
sequences of elements in .S

Some examples of countably infinite sets: Z, Q, the set of all finite bit
strings. Some examples of uncountable sets: R, the set of all infinite bit
strings.

Integrating piece-wise continuous functions. In discussing the Riemann
integral Lf f(t)dt, many introductory calculus texts only discuss in any
detail the case where the integrand f is continuous on the closed inter-
val [a, b], in which case the integral is always well defined. However,
the Riemann integral is well defined for much broader classes of func-
tions. For our purposes in this text, it is convenient and sufficient to work
with integrands that are piece-wise continuous on [a, b], which means that
there exist real numbers xg, X1, ..., xx and functions fi,..., fi, such that
a=x9g<x; <---<x,=b,and foreachi = 1,..., k, the function f; is
continuous on the closed interval [x;_1, x;], and agrees with f on the open
interval (x;_1, x;). In this case, f is integrable on [a, b], and indeed

ko ox;

b
[ ore ZJ fiydt.

i=1 7Xi-1

It is not hard to prove this equality, using the basic definition of the Riemann
integral; however, for our purposes, we can also just take the value of the
expression on the right-hand side as the definition of the integral on the
left-hand side.

If f is piece-wise continuous on [a, b], then it is also bounded on [a, b],
meaning that there exists a positive number M such that | f(¢)| < M for all
t € [a, b], from which it follows that |Lf f(@)dt| < M(b— a).

We also say that f is piece-wise continuous on [a, o) if for all b > a, f is
piece-wise continuous on [a, b]. In this case, we may define the improper
integral [ f(t) dt as the limit, as b — oo, of Lf f(t) dt, provided the limit
exists.

Estimating sums by integrals. Using elementary calculus, it is easy to
estimate a sum over a monotone sequence in terms of a definite integral, by
interpreting the integral as the area under a curve. Let f be a real-valued
function that is (at least piece-wise) continuous and monotone on the closed
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interval [a, b], where a and b are integers. Then we have

b

b
min(f(a), f (b)) < Z AOR J f(@®) dt < max(f(a), f(b)).

i=a a

Infinite series. Consider an infinite series ), x;. It is a basic fact from
calculus that if the x;’s are non-negative and )., x; converges to a value
¥, then any infinite series whose terms are a rearrangement of the x;’s con-
verges to the same value y.

If we drop the requirement that the x;’s are non-negative, but insist that
the series )2, |x;| converges, then the series )., x; is called absolutely
convergent. In this case, then not only does the series )’ x; converge to
some value y, but any infinite series whose terms are a rearrangement of
the x;’s also converges to the same value y.

Double infinite series. The topic of double infinite series may not be
discussed in a typical introductory calculus course; we summarize here the
basic facts that we need.

Suppose that {x; j}fj: | is a family non-negative real numbers such that for
each i, the series Y ; Xij converges to a value r;, and for each j the series
Y, xij converges to a value ¢;. Then we can form the double infinite series
Y 2;xij = X;ri and the double infinite series Y, ¥, x;; = X ¢;. If
(i1, j1), (i2, j2), ... 1s an enumeration of all pairs of indices (i, j), we can
also form the single infinite series Y, x;,;,. We then have ¥, ¥ x;; =
2 XiXij = Xy Xiyj,» Where the three series either all converge to the same
value, or all diverge. Thus, we can reverse the order of summation in a
double infinite series of non-negative terms. If we drop the non-negativity
requirement, the same result holds provided Y, |x;, ;.| < oo.

Now suppose )'; a; is an infinite series of non-negative terms that converges
to A, and that )’ ; bjis aninfinite series of non-negative terms that converges
to B. If (i, j1), (i2, j2), ... is an enumeration of all pairs of indices (i, j),
then ), a; b;, converges to AB. Thus, we can multiply term-wise infinite
series with non-negative terms. If we drop the non-negativity requirement,
the same result holds provided ). a; and ), ; bj converge absolutely.

Convex functions. Let I be an interval of the real line (either open, closed,
or half open, and either bounded or unbounded), and let f be a real-valued
function defined on I. The function f is called convex on I if for all
x0, x> € I, and for all ¢ € [0, 1], we have

fxo+ (1 =0x2) < 1f(x0) + (1 = 1) f(x2).
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Geometrically, convexity means that for every three points P; = (x;, f(x;)),
i =0,1,2, where each x; € I and xg < x; < X3, the point P; lies on or
below the line through Py and P».

We state here the basic analytical facts concerning convex functions:
(i) if f is convex on I, then f is continuous on the interior of I (but
not necessarily at the endpoints of I, if any);

(i1) if f is continuous on I and differentiable on the interior of I, then
f is convex on [ if and only if its derivative is non-decreasing on
the interior of 1.



