
Appendix: Some useful facts

A1. Some handy inequalities. The following inequalities involving exponen-
tials and logarithms are very handy.

(i) For all real numbers x, we have

1 + x ≤ ex,

or, taking logarithms, for x > −1, we have

log(1 + x) ≤ x.

(ii) For all real numbers x ≥ 0, we have

e−x ≤ 1 − x + x2/2,

or, taking logarithms,

−x ≤ log(1 − x + x2/2).

(iii) For all real numbers x with 0 ≤ x ≤ 1/2, we have

1 − x ≥ e−x−x
2
≥ e−2x,

or, taking logarithms,

log(1 − x) ≥ −x − x2 ≥ −2x.

(i) and (ii) follow easily from Taylor’s formula with remainder, applied to
the function ex, while (iii) may be proved by expanding log(1 − x) as a
Taylor series, and making a simple calculation.

A2. Binomial coefficients. For integers n and k, with 0 ≤ k ≤ n, one defines
the binomial coefficient

(

n

k

)

:=
n!

k!(n − k)!
=
n(n − 1) · · · (n − k + 1)

k!
.
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We have the identities
(

n

n

)

=
(

n

0

)

= 1,

and for 0 < k < n, we have Pascal’s identity
(

n

k

)

=
(

n − 1
k − 1

)

+
(

n − 1
k

)

,

which may be verified by direct calculation. From these identities, it fol-
lows that

(n
k

)

is an integer, and indeed, is equal to the number of subsets of
{1, . . . , n} of cardinality k. The usual binomial theorem also follows as an
immediate consequence: for all numbers a, b, and for all positive integers
n, we have the binomial expansion

(a + b)n =
n
∑

k=0

(

n

k

)

an−kbk.

It is also easily verified, directly from the definition, that
(

n

k

)

<

(

n

k + 1

)

for 0 ≤ k < (n − 1)/2,
(

n

k

)

>

(

n

k + 1

)

for (n − 1)/2 < k < n, and
(

n

k

)

=
(

n

n − k

)

for 0 ≤ k ≤ n.

In other words, if we fix n, and view
(n
k

)

as a function of k, then this
function is increasing on the interval [0, n/2], decreasing on the interval
[n/2, n], and its graph is symmetric with respect to the line k = n/2.

A3. Countably infinite sets. Let Z+ := {1, 2, 3, . . .}, the set of positive inte-
gers. A set S is called countably infinite if there is a bijection f : Z+ → S;
in this case, we can enumerate the elements of S as x1, x2, x3, . . . , where
xi := f (i).

A set S is called countable if it is either finite or countably infinite.

For a set S, the following conditions are equivalent:

• S is countable;

• there is a surjective function g : Z+ → S;

• there is an injective function h : S → Z+.

The following facts can be easily established:
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(i) if S1, . . . ,Sn are countable sets, then so are S1 ∪ · · · ∪ Sn and
S1 × · · · × Sn;

(ii) if S1,S2,S3, . . . are countable sets, then so is
⋃∞
i=1 Si;

(iii) if S is a countable set, then so is the set
⋃∞
i=0 S

×i of all finite
sequences of elements in S.

Some examples of countably infinite sets: Z, Q, the set of all finite bit
strings. Some examples of uncountable sets: R, the set of all infinite bit
strings.

A4. Integrating piece-wise continuous functions. In discussing the Riemann
integral

∫ b
a f (t) dt, many introductory calculus texts only discuss in any

detail the case where the integrand f is continuous on the closed inter-
val [a, b], in which case the integral is always well defined. However,
the Riemann integral is well defined for much broader classes of func-
tions. For our purposes in this text, it is convenient and sufficient to work
with integrands that are piece-wise continuous on [a, b], which means that
there exist real numbers x0, x1, . . . , xk and functions f1, . . . ,fk, such that
a = x0 ≤ x1 ≤ · · · ≤ xk = b, and for each i = 1, . . . , k, the function fi is
continuous on the closed interval [xi−1, xi], and agrees with f on the open
interval (xi−1, xi). In this case, f is integrable on [a, b], and indeed

∫ b

a

f (t) dt =
k
∑

i=1

∫xi

xi−1

fi(t) dt.

It is not hard to prove this equality, using the basic definition of the Riemann
integral; however, for our purposes, we can also just take the value of the
expression on the right-hand side as the definition of the integral on the
left-hand side.

If f is piece-wise continuous on [a, b], then it is also bounded on [a, b],
meaning that there exists a positive number M such that |f (t)| ≤M for all
t ∈ [a, b], from which it follows that |

∫ b
a f (t) dt| ≤M (b − a).

We also say that f is piece-wise continuous on [a,∞) if for all b ≥ a, f is
piece-wise continuous on [a, b]. In this case, we may define the improper
integral

∫∞
a f (t) dt as the limit, as b → ∞, of

∫ b
a f (t) dt, provided the limit

exists.

A5. Estimating sums by integrals. Using elementary calculus, it is easy to
estimate a sum over a monotone sequence in terms of a definite integral, by
interpreting the integral as the area under a curve. Let f be a real-valued
function that is (at least piece-wise) continuous and monotone on the closed
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interval [a, b], where a and b are integers. Then we have

min(f (a), f (b)) ≤
b
∑

i=a

f (i) −
∫ b

a

f (t) dt ≤ max(f (a), f (b)).

A6. Infinite series. Consider an infinite series
∑∞
i=1 xi. It is a basic fact from

calculus that if the xi’s are non-negative and
∑∞
i=1 xi converges to a value

y, then any infinite series whose terms are a rearrangement of the xi’s con-
verges to the same value y.

If we drop the requirement that the xi’s are non-negative, but insist that
the series

∑∞
i=1|xi| converges, then the series

∑∞
i=1 xi is called absolutely

convergent. In this case, then not only does the series
∑∞
i=1 xi converge to

some value y, but any infinite series whose terms are a rearrangement of
the xi’s also converges to the same value y.

A7. Double infinite series. The topic of double infinite series may not be
discussed in a typical introductory calculus course; we summarize here the
basic facts that we need.

Suppose that {xij}∞i,j=1 is a family non-negative real numbers such that for
each i, the series

∑

j xij converges to a value ri, and for each j the series
∑

i xij converges to a value cj. Then we can form the double infinite series
∑

i

∑

j xij =
∑

i ri and the double infinite series
∑

j

∑

i xij =
∑

j cj. If
(i1, j1), (i2, j2), . . . is an enumeration of all pairs of indices (i, j), we can
also form the single infinite series

∑

k xikjk . We then have
∑

i

∑

j xij =
∑

j

∑

i xij =
∑

k xikjk , where the three series either all converge to the same
value, or all diverge. Thus, we can reverse the order of summation in a
double infinite series of non-negative terms. If we drop the non-negativity
requirement, the same result holds provided

∑

k|xikjk | <∞.

Now suppose
∑

i ai is an infinite series of non-negative terms that converges
toA, and that

∑

j bj is an infinite series of non-negative terms that converges
to B. If (i1, j1), (i2, j2), . . . is an enumeration of all pairs of indices (i, j),
then

∑

k aikbjk converges to AB. Thus, we can multiply term-wise infinite
series with non-negative terms. If we drop the non-negativity requirement,
the same result holds provided

∑

i ai and
∑

j bj converge absolutely.

A8. Convex functions. Let I be an interval of the real line (either open, closed,
or half open, and either bounded or unbounded), and let f be a real-valued
function defined on I . The function f is called convex on I if for all
x0, x2 ∈ I , and for all t ∈ [0, 1], we have

f (tx0 + (1 − t)x2) ≤ tf (x0) + (1 − t)f (x2).
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Geometrically, convexity means that for every three points Pi = (xi, f (xi)),
i = 0, 1, 2, where each xi ∈ I and x0 < x1 < x2, the point P1 lies on or
below the line through P0 and P2.

We state here the basic analytical facts concerning convex functions:

(i) if f is convex on I , then f is continuous on the interior of I (but
not necessarily at the endpoints of I , if any);

(ii) if f is continuous on I and differentiable on the interior of I , then
f is convex on I if and only if its derivative is non-decreasing on
the interior of I .


